
KEYWORDS
VHDL, Optimization, Simulation

ABSTRACT

This paper proposes a new method to speedup si-
mulation of VHDL models. Therefore, a tool na-
med ATOMS (Automatic Optimization of
VHDL Models for Simulation) reads in a VHDL
source model and generates automatically a new
optimized VHDL model which is simulated fa-
ster by the same simulator. ATOMS arises out of
an approach to speedup simulation of a RISC
computer system running its operating system.
The CPU is modeled near gate level to calculate
the rate of gate level faults covered by pin level
faults. This is performed by software based fault
injection experiments.

ATOMS achieves the speedup by reducing the
number of processes and signals of the source
model. The lower the abstraction level of the
VHDL source model the higher is the speedup of
the simulation. Though, optimizing gate level
models promises the most efficient speedup. The
average speedup of the simulation is measured to
5-8, the best measured speedup was 20.

INTRODUCTION

VHDL models of contemporary systems are as
complex as the system itself. Synthesis of gate le-
vel models ends in a very complex network of lo-
gic gates, flipflops and latches. Simulating these
gate level models requires a lot of CPU time. E.g.
for a simulation interval of 1 ms the VHDL simu-

lator needs 2.5 hours CPU time to simulate a
VHDL model of a MVME188 32 bit RISC sy-
stem (Motorola INC. 1992), although only the
CPU, an M88000, is modeled near gate level and
the periphery is modeled at an abstract behaviou-
ral level. The target machine simulating the
MVME188 is a SPARCstation LX running the
Modeltech VHDL-Simulator.

Efforts analyzing performance of simulation of
VHDL models started with Hueber 1991. Levia
O. 1991 and Bonomo et al. 1992 show, how to
write VHDL models which can be simulated ef-
ficiently. This paper introduces ATOMS, a tool
which optimizes VHDL models automatically.

The paper is divided into three further sections.
The following section describes two tasks a
VHDL simulator has to deal with and how the
CPU time is split to these tasks. Based on this re-
sult optimization methods are presented.

The next section presents the implementation of
ATOMS. The stages starting from reading in the
VHDL source model and specifying the entity
and architecture to optimize till the output of the
automatically optimized model are explained.

Finally, the conclusion summarizes the most im-
portant results and the section future research ex-
plains what else can be done to speedup simulati-
on.

OPTIMIZATION METHODS

CPU time used for simulation of VHDL models
can be split into two parts. The time needed to

ATOMS - A Tool for Automatic Optimization of
Gate Level VHDL Models for Simulation

Oliver Tschäche and Volkmar Sieh

Department of Computer Science III
University of Erlangen-Nürnberg

Martensstr.3
91058 Erlangen, Germany

Email: {ortschae,vrsieh}@immd3.informatik.uni-erlangen.de

schedule processes and to switch between pro-
cesses and the rest of CPU time which is used to
execute the statements of the processes, doing the
actual behaviour. Considering the VHDL model
of an logic NAND gate with two inputs in figure
1, gate level models consist of many signals and
processes and very few statements in the proces-
ses, one bold printed statement in figure 1.

Figure 1: VHDL model of a NAND gate

To calculate the CPU time used for execution of
the statements, the VHDL model in figure 2 is si-
mulated with num=1 and num=2 . The difference
of the measured CPU times of the simulations is
the time needed to process the inner for-loop
(1000 additions). Running the Modeltech VHDL
simulator on an SPARCstation LX, this time is
6.8s-3.9s=2.9s. The times are measured by using
the UNIX command time which runs the simula-
tor in batch mode.

Figure 2: VHDL model to estimate time of
statement execution

ENTITY nand2 IS
PORT(i0,i1 : IN bit;

o : OUT bit
);

END nand2;

ARCHITECTURE behaviour OF nand2 IS
BEGIN

PROCESS(i0,i1) BEGIN
o <= i0 NAND i1;

END PROCESS;
END behaviour;

ENTITY perf_calc IS
GENERIC(num : integer);

END perf_calc;

ARCHITECTURE behaviour OF perf_calc IS
SIGNAL o : integer;

BEGIN
PROCESS

VARIABLE c,d,e : integer;
BEGIN

FOR c IN 1 TO num LOOP
e:=0;
FOR d IN 1 TO 1000 LOOP

e := e + d;
END LOOP;

END LOOP;
o <= e;
WAIT FOR 10 ns;

END PROCESS;
END behaviour;

Starting the simulator and loading the VHDL
model needs 0.2s. Thus, the CPU time spent for
scheduling is 3.9s-2.9s-0.2s=0.8s. Assuming that
a logic expression like AND, OR, XOR, and so
on is calculated as fast as an addition by the simu-
lating machine the CPU time for processing
simple statements like that of the NAND2 ex-
ample is about 2.9s/1000=2.9ms. Thus, the CPU
time used to schedule processes amounts to less
than 0.4% (2.9ms/0.8s) of the CPU time needed
for simulation. Because of the higher number of
processes and signals in a gate level model the
CPU time used by the scheduler constitutes more
than 99.6%. Because of this portion of CPU time
used for scheduling reducing the number of pro-
cesses and signals promises the best reduction of
CPU time.

A very simple method to reduce the number of
processes is to search for flipflops which are trig-
gered by the same event. For example, a 32 bit re-
gister consists of 32 single bit flipflops and so 32
processes in a gate level model. The statements
of these processes can be collected in one single
process. For three flipflops collected in one pro-
cess the CPU time is 86% of the original model.

Another way to reduce the number of processes
and signals of the VHDL source model is to se-
arch for connected combinational processes. A
combinational process describes a combinational
circuit like an AND gate, multiplexer or decoder.
These components have no internal state unlike a
flipflop or latch. Combinational processes can be
collected in one single processes, if they are con-
nected with signals and if they are feed-forward.
To generate the correct logic function it is neces-
sary to sort the statements of the combinational
processes in the way the signals flow through
them. This optimization method eliminates
hazards and spikes, since the sorting of processes
excludes delta cycles. An example for this me-
thod is shown in figure 3.

The speedup of this method is presented by an
example of adders of different bit length. The ad-
ders are implemented as ripple carry adders built
up from full adders which are modeled in one
process. Thus, a 16 bit adder consists of 16 pro-
cesses. Optimization of all adder models results
in a model with one single process. For lengths
of 1 to 32 bits (processes) the CPU time used for

simulating the source and optimized VHDL mo-
dels is measured. To this end, input vectors of the
adders are stimulated with different wave tables
changing their value in cycles of 100 ns:

• counter stimulus: the bits of the input
vectors of the adders are concatenated to
one vector. The number represented by this
vector is incremented by 1 each cycle.

• random stimulus: the bits of the input
vector are changed randomly each cycle.

Figure 3: combinational optimization

The diagram in figure 4 shows the speedup for
the different number of processes of the VHDL
source model. For the counter stimulus the opti-

ENTITY xor2 IS
PORT(i0,i1 : IN bit;

o : OUT bit
);

END xor2;

ARCHITECUTRE gate
OF xor2 IS

SIGNAL ii0,ii1 : bit;
SIGNAL m1,m2 : bit;

BEGIN
inv_i0 : nand2

PORT MAP(i0,i0,o=>ii0);
inv_i1 : nand2

PORT MAP(i1,i1,o=>ii1);
gen_m1 : nand2

PORT MAP(i0,ii1,m1);
gen_m2 : nand2

PORT MAP(ii0,i1,m2);
gen_result : nand2

PORT MAP(m1,m2,o);
END gate;

xor2

ARCHITECTURE optimized OF xor2 IS
BEGIN

PROCESS(i0,i1)
VARIABLE ii0,ii1,m1,m2 : bit;

BEGIN
ii0 := i0 NAND i0;
ii1 := i1 NAND i1;
m1 := i0 NAND ii1;
m2 := ii0 NAND i1;
o <= m1 NAND m2;

END PROCESS;
END optimized

mized model for less processes is simulated fa-
ster than the original. Then, starting at 7 proces-
ses it is simulated slower. The optimized model is
slower because the stimulus activates less than
two processes per cycle independent to the length
of an adder. Thus, the statements of two proces-
ses are to be processed. The process of the opti-
mized model processes the statements of all bits.
Starting at seven processes it is faster to schedule
the processes and process the statements of the
source model than processing the statements for
all bits in one process of the optimized model. If
the stimuli activate a fraction of the processes of
the source model like the random stimulus does
the optimized model is simulated faster.

Figure 4: Speedup for ripple carry adders

Using the methods of combining flipflops and
building combinational blocks concurrently
VHDL models can be optimized to one single
process if all triggered components like flipflops
are sensitive to the same trigger (clock) signal.
The combination of the two methods is not imp-
lemented yet.

IMPLEMENTATION

Contemporary models are so complex that they
cannot be optimized manually because of the
time needed to generate and to verify the optimi-
zed model. Therefore, we searched for a way to
optimize VHDL models automatically. This is
achieved by ATOMS.

ATOMS is developed in an UNIX environment.
It is started with two parameters. The first para-
meter is the name of the entity and the second the

5

1

0.5

8 16 24 32

2

random

counter

number of processes

sp
ee

du
p

name of the appendant architecture which is to be
optimize. In addition to the command line para-
meters ATOMS reads in a configuration file in
which the user has to write the names of the
VHDL source files. Then, ATOMS processes the
VHDL source model in three stages:

1. Reading the VHDL source

2. Analysation of VHDL source

3. Opimization and output

The last stage puts out the optimized VHDL mo-
del, an architecture named ’optimized’. This ar-
chitecture consists of signal declarations and the
processes generated by the optimization stage.
There are no component instantiations in the op-
timized architecture.

ATOMS supports different levels of VHDL sub-
sets in different stages. In the stage reading
VHDL source and transforming it into a syntax
tree ATOMS supports the ’93 VHDL standard.
The next stages only support VHDL elements
used by the VHDL model of the MVME188 sy-
stem. The VHDL feature of resolved signals is
not implemented yet.

The first stage of ATOMS processes the VHDL
source in two moduls. The load module reads all
files pointed to by the configuration file and con-
verts them into a syntax tree. The load module
consists of the lexical and grammatical descripti-
on. To achieve best portability the GNU tools
Flex and Bison are used to produce C modules of
these descriptions which are derived from the
ALLIANCE CAD toolset. The resolve module
checks references to names introduced by USE-
clauses and resolves them if they are valid.

The next stage of ATOMS analyses the seman-
tics of the VHDL source. It is divided in two mo-
dules: the behavioural and structural analysis.
Before the behavioural analysis all processes are
explored for signals the process uses for input,
output or sensitivity. Signals a process is sensitiv
to are described in the process’ sensitivity list. In-
put signals are the signals used in the process’
statements to calculate new values at the right of
variable/signal assign statements or forming con-
ditions in IF- or CASE-statements. The output si-
gnals of a process are the signals referenced at the

left of a signal assignment expression.

Behaviour analysis inspects all processes of the
VHDL source in the syntax tree whether they ser-
ve conditions for a combinatorical process or not.
These are:

• All input signals must be sensitivity signals
and must be on the sensitivity list of a pro-
cess. Wait statements are not allowed.

• To a value variables must be assigned befo-
re they are used in expressions.

• IF and CASE statements must have a de-
fault alternative. An IF statement must
have an ELSE alternative and a CASE sta-
tement must have an WHEN OTHERS al-
ternative.

• All alternatives of an IF or CASE statement
must assign values to exactly the same va-
riables and signals.

If a process meets all of these conditions it is
combinatorical. If only one of these conditions do
not meet the process is assumed to be non combi-
natorical.

Structural analysis resolves component instantia-
tions and generates a planar, non hierarchical
view of the VHDL source model. Starting with
the architecture which should be optimized
structural analysis searches in the architecture
body for processes and component instantiation
statements. If a component instantiation state-
ment is found the same procedure searches recur-
sively in the architecture body of that component
for further processes and component instantiation
statements. At the end of structural analysis for
each process a list with the signals connected to
this process exists and for each signal a list of
connected processes exists.

The last stage of ATOMS does the optimization
and the output of the optimized VHDL model.
One optimization module searches for non com-
binatorical processes which are sensitive to one
single signal. Processes sensitive to the same si-
gnal are combined to one process sensitive to this
signal and the processes optimized in this way are
removed from the list of processes.

A further module of the optimizing stage sear-
ches for blocks of connected combinational pro-
cesses to build a single optimized process for
each block. To achieve this, the signals of the
first combinational process in the list of proces-
ses are searched for other connected combinatio-
nal processes. Then, the signals of this process
are examined to which other combinational pro-
cesses they are connected. Interrogation of all si-
gnals of all interconnected processes results in a
combinational block. Starting from the input si-
gnals of this block it is searched for processes ha-
ving only input signals which are input signals of
the block. The output signals of these processes
are added to the list of input signals and the se-
arch for processes depending only on these si-
gnals starts again. The sequence in which the pro-
cesses are found is the same as the sequence in
which the statements of the processes must be co-
pied to the optimized process. Finally all proces-
ses used to build the new block are removed from
the list of processes.

The processes left in the list cannot be optimized
by the current implementation of ATOMS. To
complete the optimized model they are copied
unchanged.

In the current implementation the optimization
stage of ATOMS does not handle resolved si-
gnals. Thus, only parts of MVME188 model can
be optimized by ATOMS.

CONCLUSION

ATOMS is a tool which speeds up simulation of
VHDL models of low abstraction level. For gate
level models the average speedup is about 5-8.

The speedup depends on the stimuli. Thus, it is
possible that the optimized model is simulated
slower for very special stimuli.

ATOMS supports only a subset of VHDL ’93.
The most important restriction is that ATOMS
cannot handle resolved signals.

FUTURE RESEARCH

ATOMS optimizes VHDL models so that the
time spent for scheduling and switching proces-
ses is decreased and the time spent to process the
statements is increased. No efforts are made to

decrease the time spent to process the statements
of a process. This could be a potential place to
speedup the simulation of the optimized model
(Aho et al. 1996).

Since ATOMS rearranges the VHDL source mo-
del additional information should be generated
which makes it possible to map the states of the
signals from the source model to the optimized
model and vice versa.

REFERENCES

Aho, A. V.; R. Sethi and J. D. Ullman 1996. Compilers.
Addison-Wesley, ISBN 0-201-10088-6.

Balboni, A.; P. Cavalloro; M. Mastretti; A. Bonomo; E.
Paschetta; G. Buonanno; and D. Sciuto. ”A Set of
Tools for VHDL-Code Quality Evaluation”,
Proceedings of the 1994 VHDL-FORUM for CAD in
EUROPE.

Bonomo A.; P. Garino; G. Ghigo; A. Balboni; and M.
Mastretti. 1992.”VHDL optimization techniques for
coding and simulation”, Technical Report, CSELT
Torino.

Hueber M. 1991. ”VHDL experiments on Performance”,
Proceedings of the 1991 EURO-VHDL Conference.

Jenn, E.; J. Arlat; M. Rimén; J. Ohlsson; and J. Karisson.
1994. ”Fault Injection into VHDL Models: The
MEFISTO Tool.” In digest of papers of the 24.
International Symposium on Fault-Tolerant
Computing (Pasadena, California, June 27-30, 1994),
IEEE Computer Society, 66-75

Levia, O. 1991. ”Writing High Performance VHDL
Models”, Proceedings of the 1991 EURO-VHDL
Conference.

Motorola INC. 1992. MVME188A VMEmodule RISC
Microcomputer User’s Manual.

Sieh V.; O. Tschäche; and F. Balbach. 1996. ”VHDL
based Fault Injection with VERIFY”, internal report
University of Erlangen-Nürnberg, IMMD III

Tschäche O. 1996. ”Automatische Optimierung von
VHDL-Modellen” (German), Diplomarbeit am
Lehrstuhl IMMD III der Friedrich-Alexander
Universität Erlangen-Nürnberg, postscript version
available from
http://faui30t.informatik.uni-erlangen. de:1200/Staff/
ortschae/papers/dipl.ps

